A Gossamer Fresnel Lens For Space-based Imaging

Surveillance

Defense

Astronomy

Rod Hyde

Sham Dixit

Phil Stephan

Dean Urone

Sheila Vaidya

Andy Weisberg

John Marion Jim Peterson

Mark Eckart

Blake Myers

Paula Smith

Steve Mooney

Eyeglass is a New Type of Large Space Telescope

- Large diffractive lens ⇒ Two major advantages
 - Optical tolerances : Aperture is slow, transmissive lens
 - Tolerates much larger ripples (> 40,000) than mirror

- Fielding: Aperture is thin, flat membrane
 - Thin: Lightweight, flexible, and packageable
 - Flat: Easy to package, deploy, and hold in-shape
- Telescope contains two cooperating spacecraft
 - Main Aperture : Thin diffractive lens
 - Low mass and loose tolerances
 - Eyepiece : Mobile image collector
 - Conventional (meter-class) telescope and vehicle
 - Stationkeeping : Vehicles stay ∼ kilometer apart
 - Micro-gee propulsion with slow, loose, control loop

Eyeglass: Challenges and Progress

Color Correction

- Challenge : Diffractive optics are usually monochromatic
- Progress: We have built and tested broadband telescopes
 - Diffraction-limited from 470-700 nm
 - And have *really* broadband designs: Visible ⇔ LWIR

- Challenge : Need large (tens of meters) diffractive lens
 - Using thin, space-suitable, materials
- Progress: We have built a thin, 5 meter, glass lens
 - Have patterned thin, space-suitable, polymers

Space Fielding

- Challenge: Lens must be stowed and launched
 - Then deployed, held-in-shape, and used in space
- Progress : We have designed large telescopes
- With ways to package, launch, and deploy them

We Have Built a 5 meter Lens: LLNL & DARPA

- Palomar-sized diffractive lens
 - Lithographically patterned : f/50
 - Binary phase profile : 60 µm period
 - 72 thin-glass panels: 70 x 80 cm
 - 700 μ m thick : 1.6 kg/m²
 - Arranged in foldable pattern
 - Origami-fold to octagonal hatbox

Focal spots

- Optical demonstration
 - Point-to-point (200 m) focusing
 - Used green, red, violet lasers
 - Got tight (1-2 cm) spots
 - Set by turbulence, unsmoothed glass

Laser

View from green focus

The Lens Was Built in 100 Days

Five Meter Lens in the Field

- Palomar-sized diffractive lens
 - Made with 72 separate thin-glass (0.7 mm) segments
 - 250 meter focal length utilizing 60 μm wide grooves

5 Meter Lens: Optical Performance

Focal spots (~ 200 meter)

- Point-to-point tests
 - Expand point source to fill lens; Then refocus to spot(s)
- Tested with purple (405 nm), green (532 nm), and red (670 nm) lasers

Delivers multiple (1-2 cm) focal spots: Set by atmosphere and glass-nonuniformity

Laser source

String of harmonic focal spots

Back-view from one focal spot

Eyeglass: Future Directions

Polymer Lenses

- Large lenses must be thin and lightweight
 - 1 mil polymer films vs. 700 µm glass sheets : 50-fold improvement
- Easier to launch than glass
 - Plastic may crease, but it won't break
- Use space-suitable polyimides
 - Kapton (the standard), CP1 (transparent), TFDB (transparent & low CTE)
- Examine two, roll-to-roll, commercial patterning processes
 - Laser ablation : Inkjet nozzles, Chip dielectric layers
 - Micro-embossing : Hologram coatings

Square Ribbon Lens

- Two orthogonal arrays of ribbons
 - Crossed 1-D lenses: Each ribbon focuses light in one direction
 - Loose tolerances: Distortions along ribbon length have no effect
- Launchable and deployable
 - Ribbons are individually packaged in meter-width rolls
 - Mounted on deployable truss and pulled-out like window-shades

